To find ID YAL120W use expression: YAL120W
To find all IDs starting with YAL use expression YAL.*
To find all IDs ending with W use expression .*W
To find all IDs with 22 somewhere in the text use expression: .*22.*
To find all IDs with a number somewhere in the text use expression: .*[/d]*.*
Construct | Mathces |
Character | |
x | The character x |
\\ |
The backslash character |
\0n | The character with octal value 0n (0 <= n <= 7) |
\0nn | The character with octal value 0nn (0 <= n <= 7) |
\0mnn | The character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7) |
\xhh | The character with hexadecimal value 0xhh |
\uhhhh | The character with hexadecimal value 0xhhhh |
\t | The tab character ('\u0009') |
\n | The newline (line feed) character ('\u000A') |
\r | The carriage-return character ('\u000D') |
\f | The form-feed character ('\u000C') |
\a | The alert (bell) character ('\u0007') |
\e | The escape character ('\u001B') |
\cx | The control character corresponding to x |
Character classes | |
---|---|
[abc] | a, b, or c (simple class) |
[^abc] | Any character except a, b, or c (negation) |
[a-zA-Z] | a through z or A through Z, inclusive (range) |
[a-d[m-p]] | a through d, or m through p: [a-dm-p] (union) |
[a-z&&[def]] | d, e, or f (intersection) |
[a-z&&[^bc]] | a through z, except for b and c: [ad-z] (subtraction) |
[a-z&&[^m-p]] | a through z, and not m through p: [a-lq-z](subtraction) |
Predefined character classes | |
. | Any character (may or may not match line terminators) |
\d | A digit: [0-9] |
\D | A non-digit: [^0-9] |
\s | A whitespace character: [ \t\n\x0B\f\r] |
\S | A non-whitespace character: [^\s] |
\w | A word character: [a-zA-Z_0-9] |
\W | A non-word character: [^\w] |
POSIX character classes (US-ASCII only) | |
\p{Lower} | A lower-case alphabetic character: [a-z] |
\p{Upper} | An upper-case alphabetic character:[A-Z] |
\p{ASCII} | All ASCII:[\x00-\x7F] |
\p{Alpha} | An alphabetic character:[\p{Lower}\p{Upper}] |
\p{Digit} | A decimal digit: [0-9] |
\p{Alnum} | An alphanumeric character:[\p{Alpha}\p{Digit}] |
\p{Punct} | Punctuation: One of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~ |
\p{Graph} | A visible character: [\p{Alnum}\p{Punct}] |
\p{Print} | A printable character: [\p{Graph}] |
\p{Blank} | A space or a tab: [ \t] |
\p{Cntrl} | A control character: [\x00-\x1F\x7F] |
\p{XDigit} | A hexadecimal digit: [0-9a-fA-F] |
\p{Space} | A whitespace character: [ \t\n\x0B\f\r] |
Classes for Unicode blocks and categories | |
\p{InGreek} | A character in the Greek block (simple block) |
\p{Lu} | An uppercase letter (simple category) |
\p{Sc} | A currency symbol |
\P{InGreek} | Any character except one in the Greek block (negation) |
[\p{L}&&[^\p{Lu}]] | Any letter except an uppercase letter (subtraction) |
Boundary matchers | |
^ | The beginning of a line |
$ | The end of a line |
\b | A word boundary |
\B | A non-word boundary |
\A | The beginning of the input |
\G | The end of the previous match |
\Z | The end of the input but for the final terminator, if any |
\z | The end of the input |
Greedy quantifiers | |
X? | X, once or not at all |
X* | X, zero or more times |
X+ | X, one or more times |
X{n} | X, exactly n times |
X{n,} | X, at least n times |
X{n,m} | X, at least n but not more than m times |
Reluctant quantifiers | |
X?? | X, once or not at all |
X*? | X, zero or more times |
X+? | X, one or more times |
X{n}? | X, exactly n times |
X{n,}? | X, at least n times |
X{n,m}? | X, at least n but not more than m times |
Possessive quantifiers | |
X?+ | X, once or not at all |
X*+ | X, zero or more times |
X++ | X, one or more times |
X{n}+ | X, exactly n times |
X{n,}+ | X, at least n times |
X{n,m}+ | X, at least n but not more than m times |
Logical operators | |
XY | X followed by Y |
X|Y | Either X or Y |
(X) | X, as a capturing group |
Back references | |
\n | Whatever the nth capturing group matched |
Quotation | |
\ | Nothing, but quotes the following character |
\Q | Nothing, but quotes all characters until \E |
\E | Nothing, but ends quoting started by \Q |
Special constructs (non-capturing) | |
(?:X) | X, as a non-capturing group |
(?idmsux-idmsux) | Nothing, but turns match flags on - off |
(?idmsux-idmsux:X) | X, as a non-capturing group with the given flags on - off |
(?=X) | X, via zero-width positive lookahead |
(?!X) | X, via zero-width negative lookahead |
(?<=X) | X, via zero-width positive lookbehind |
(?<!X) | X, via zero-width negative lookbehind |
(?>X) | X, as an independent, non-capturing group |
Backslashes within string literals in Java source code are interpreted as required by the Java Language Specification as either Unicode escapes or other character escapes. It is therefore necessary to double backslashes in string literals that represent regular expressions to protect them from interpretation by the Java bytecode compiler. The string literal "\b", for example, matches a single backspace character when interpreted as a regular expression, while "\\b" matches a word boundary. The string literal "\(hello\)" is illegal and leads to a compile-time error; in order to match the string (hello) the string literal "\\(hello\\)" must be used.
The precedence of character-class operators is as follows, from highest to lowest:
1 Literal escape \x 2 Grouping [...] 3 Range a-z 4 Union [a-e][i-u] 5 Intersection [a-z&&[aeiou]]
Note that a different set of metacharacters are in effect inside a character class than outside a character class. For instance, the regular expression . loses its special meaning inside a character class, while the expression - becomes a range forming metacharacter.
If UNIX_LINES
mode is activated, then the only line terminators recognized are newline characters.
The regular expression . matches any character except a line terminator unless the DOTALL
flag is specified.
By default, the regular expressions ^ and $ ignore line terminators and only match at the beginning and the end, respectively, of the entire input sequence. If MULTILINE
mode is activated then ^ matches at the beginning of input and after any line terminator except at the end of input. When in MULTILINE
mode $ matches just before a line terminator or the end of the input sequence.
1 ((A)(B(C))) 2 (A) 3 (B(C)) 4 (C)